Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32.439
Filter
1.
Food Res Int ; 186: 114371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729729

ABSTRACT

In this study, the impact of soy hull polysaccharide (SHP) concentration on high-internal-phase emulsions (HIPEs) formation and the gastrointestinal viability of Lactobacillus plantarum within HIPEs were demonstrated. Following the addition of SHP, competitive adsorption with soy protein isolate (SPI) occurred, leading to increased protein adhesion to the oil-water interface and subsequent coating of oil droplets. This process augmented viscosity and enhanced HIPEs stability. Specifically, 1.8 % SHP had the best encapsulation efficiency and delivery efficiency, reaching 99.3 % and 71.1 %, respectively. After 14 d of continuous zebrafishs feeding, viable counts of Lactobacillus plantarum and complex probiotics in the intestinal tract was 1.1 × 107, 1.3 × 107, respectively. In vitro experiments further proved that HIPEs' ability to significantly enhance probiotics' intestinal colonization and provided targeted release for colon-specific delivery. These results provided a promising strategy for HIPEs-encapsulated probiotic delivery systems in oral food applications.


Subject(s)
Emulsions , Lactobacillus plantarum , Polysaccharides , Probiotics , Soybean Proteins , Zebrafish , Soybean Proteins/chemistry , Animals , Polysaccharides/chemistry , Lactobacillus plantarum/metabolism , Glycine max/chemistry , Viscosity
2.
Food Res Int ; 186: 114374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729731

ABSTRACT

As a crucial component of the fungal cell membranes, ergosterol has been demonstrated to possess surface activity attributed to its hydrophobic region and polar group. However, further investigation is required to explore its emulsification behavior upon migration to the oil-water interface. Therefore, this study was conducted to analyze the interface properties of ergosterol as a stabilizer for water in oil (W/O) emulsion. Moreover, the emulsion prepared under the optimal conditions was utilized to load the water-soluble bioactive substance with the chlorogenic acid as the model molecules. Our results showed that the contact angle of ergosterol was 117.017°, and its dynamic interfacial tension was obviously lower than that of a pure water-oil system. When the ratio of water to oil was 4: 6, and the content of ergosterol was 3.5 % (ergosterol/oil phase, w/w), the W/O emulsion had smaller particle size (438 nm), higher apparent viscosity, and better stability. Meanwhile, the stability of loaded chlorogenic acid was improved under unfavorable conditions (pH 1.2, 90 °C, ultraviolet irradiation, and oxidation), which were 73.87 %, 59.53 %, 62.53 %, and 69.73 %, respectively. Additionally, the bioaccessibility of chlorogenic acid (38.75 %) and ergosterol (33.69 %), and the scavenging rates of the emulsion on DPPH radicals (81.00 %) and hydroxyl radicals (82.30 %) were also enhanced. Therefore, a novel W/O Pickering emulsion was prepared in this work using ergosterol as an emulsifier solely, which has great potential for application in oil-based food and nutraceutical formulations.


Subject(s)
Chlorogenic Acid , Emulsifying Agents , Emulsions , Ergosterol , Particle Size , Water , Ergosterol/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Water/chemistry , Chlorogenic Acid/chemistry , Viscosity , Antioxidants/chemistry , Oils/chemistry , Hydrogen-Ion Concentration
3.
Int J Immunopathol Pharmacol ; 38: 3946320241249429, 2024.
Article in English | MEDLINE | ID: mdl-38721971

ABSTRACT

OBJECTIVE: This study investigated the raft-forming suspension of famotidine as an anti-reflux formulation to improve the oral bioavailability of narrow absorption window drugs by enhancing gastric residence time (GRT) and preventing gastro-esophageal reflux disease (GERD). METHOD: Various combinations of raft-forming agents, such as Tragacanth gum (TG), guar gum (GG), and xanthan gum (XG), were evaluated alongside sodium alginate (SA) to develop an effective raft. Preformulation studies and preliminary screening were conducted to identify the most suitable raft-forming agent, and GG was chosen due to its mucilaginous properties. The formulation was optimized using a 32 full factorial design, with the quantities of GG and SA as independent factors and apparent viscosity and in-vitro drug release (%) as dependent factors. The in vivo floating behavior study was performed for optimized and stabilized formulation. RESULTS: Among the tested batches, F6 was selected as the optimized formulation. It exhibited desirable characteristics such as adequate raft weight for extended floating in gastric fluid, improved apparent viscosity, and a significant percentage of drug release at 12 h. A mathematical model was applied to the in-vitro data to gain insights into the drug release mechanism of the formulation. The stability of the suspension was assessed under accelerated conditions, and it demonstrated satisfactory stability. The formulation remains floating in the Rabbit stomach for more than 12 h. CONCLUSION: It concludes that the developed formulation has enhanced bioavailability in the combination of GG and SA. The floating layer of the raft prevents acid reflux, and the famotidine is retained for an extended period of time in the gastric region, preventing excess acid secretion. The developed formulations are effective for stomach ulcers and GERD, with the effect of reducing acid secretion by H2 receptor antagonists.


Subject(s)
Drug Delivery Systems , Famotidine , Galactans , Famotidine/administration & dosage , Famotidine/pharmacokinetics , Animals , Drug Delivery Systems/methods , Drug Liberation , Alginates , Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/metabolism , Biological Availability , Mannans/administration & dosage , Plant Gums , Viscosity , Male , Rabbits , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Polysaccharides, Bacterial , Drug Stability , Administration, Oral
4.
BMC Oral Health ; 24(1): 551, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734599

ABSTRACT

BACKGROUND: Periodontal diseases may benefit more from topical treatments with nanoparticles rather than systemic treatments due to advantages such as higher stability and controlled release profile. This study investigated the preparation and characterization of thermosensitive gel formulations containing clindamycin-loaded niosomes and solid lipid nanoparticles (SLNs) loaded with fluconazole (FLZ), as well as their in vitro antibacterial and antifungal effects in the treatment of common microorganisms that cause periodontal diseases. METHODS: This study loaded niosomes and SLNs with clindamycin and FLZ, respectively, and assessed their loading efficiency, particle size, and zeta potential. The particles were characterized using a variety of methods such as differential scanning calorimetry (DSC), dynamic light scattering (DLS), and Transmission Electron Microscopy (TEM). Thermosensitive gels were formulated by combining these particles and their viscosity, gelation temperature, in-vitro release profile, as well as antibacterial and antifungal effects were evaluated. RESULTS: Both types of these nanoparticles were found to be spherical (TEM) with a mean particle size of 243.03 nm in niosomes and 171.97 nm in SLNs (DLS), and respective zeta potentials of -23.3 and -15. The loading rate was 98% in niosomes and 51% in SLNs. The release profiles of niosomal formulations were slower than those of the SLNs. Both formulations allowed the release of the drug by first-order kinetic. Additionally, the gel formulation presented a slower release of both drugs compared to niosomes and SLNs suspensions. CONCLUSION: Thermosensitive gels containing clindamycin-loaded niosomes and/or FLZ-SLNs were found to effectively fight the periodontitis-causing bacteria and fungi.


Subject(s)
Clindamycin , Fluconazole , Gels , Liposomes , Nanoparticles , Particle Size , Periodontal Diseases , Clindamycin/administration & dosage , Clindamycin/therapeutic use , Nanoparticles/chemistry , Fluconazole/administration & dosage , Fluconazole/pharmacology , Periodontal Diseases/drug therapy , Antifungal Agents/administration & dosage , Antifungal Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Transmission , Temperature , Calorimetry, Differential Scanning , Candida albicans/drug effects , Viscosity , Lipids/chemistry , Humans
5.
Pak J Pharm Sci ; 37(1): 95-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741405

ABSTRACT

Hydrophilic drugs could be incorporated into the skin surface by manes of Lipogel. This study aimed to prepare miconazole lipogel with natural ingredients to enhance drug permeability using dimethyl Sulfoxide (DMSO). The miconazole lipogels, A1 (without DMSO) and A2 (with DMSO) were formulated and evaluated for organoleptic evaluation, pH, viscosity, stability studies, freeze-thawing, drug release profile and drug permeation enhancement. Results had stated that prepared lipogel's pH falls within the acceptable range required for topical delivery (4 to 6) while both formulations show good results in organoleptic evaluation. The A2 formulation containing DMSO shows better permeation of miconazole (84.76%) on the artificial skin membrane as compared to A1 lipogel formulation (50.64%). In in-vitro drug release studies, A2 for-mulation showed 87.48% drug release while A1 showed just 60.1% drug release from lipogel. Stability studies were performed on model formulations under environmental conditions and both showed good spreadibility, stable pH, free of grittiness and good consistency in formulation. The results concluded that A2 formulation containing DMSO shows better results as compared to DMSO-free drug lipogel.


Subject(s)
Dimethyl Sulfoxide , Drug Liberation , Gels , Miconazole , Permeability , Miconazole/administration & dosage , Miconazole/chemistry , Miconazole/pharmacokinetics , Dimethyl Sulfoxide/chemistry , Viscosity , Drug Stability , Hydrogen-Ion Concentration , Skin Absorption/drug effects , Chemistry, Pharmaceutical , Drug Compounding , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Administration, Cutaneous
6.
Sci Adv ; 10(19): eadl1586, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718128

ABSTRACT

Viscoelastic transformation of tissue drives aberrant cellular functions and is an early biomarker of disease pathogenesis. Tissues scale a range of viscoelastic moduli, from biofluids to bone. Moreover, viscoelastic behavior is governed by the frequency at which tissue is probed, yielding distinct viscous and elastic responses modulated over a wide frequency band. Existing tools do not quantify wideband viscoelastic spectra in tissues, leaving a vast knowledge gap. We present wideband laser speckle rheological microscopy (WB-SHEAR) that reveals elastic and viscous response over sub-megahertz frequencies previously not investigated in tissue. WB-SHEAR uses an optical, noncontact approach to quantify wideband viscoelastic spectra in specimens spanning a range of moduli from low-viscosity fibrin to highly elastic bone. Via laser scanning, micromechanical imaging is enabled to access wideband viscoelastic spectra in heterogeneous tumor specimens with high spatial resolution (25 micrometers). The ability to interrogate the viscoelastic landscape of diverse biospecimens could transform our understanding of mechanobiological processes in various diseases.


Subject(s)
Elasticity , Rheology , Viscosity , Rheology/methods , Humans , Animals , Lasers , Microscopy/methods
7.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731485

ABSTRACT

Abnormal viscosity is closely related to the occurrence of many diseases, such as cancer. Therefore, real-time detection of changes in viscosity in living cells is of great importance. Fluorescent molecular rotors play a critical role in detecting changes in cellular viscosity. Developing red emission viscosity probes with large Stokes shifts and high sensitivity and specificity remains an urgent and important topic. Herein, a novel viscosity-sensitive fluorescent probe (TCF-VIS1) with a large stokes shift and red emission was prepared based on the 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) skeleton. Due to intramolecular rotation, the probe itself does not fluorescence at low viscosity. With the increase in viscosity, the rotation of TCF-VIS1 is limited, and its fluorescence is obviously enhanced. The probe has the advantages of simple preparation, large Stokes shift, good sensitivity and selectivity, and low cytotoxicity, which make it successfully used for viscosity detection in living cells. Moreover, TCF-VIS1 showed its potential for cancer diagnosis at the cell level and in tumor-bearing mice by detecting viscosity. Therefore, the probe is expected to enrich strategies for the detection of viscosity in biological systems and offer a potential tool for cancer diagnosis.


Subject(s)
Fluorescent Dyes , Animals , Fluorescent Dyes/chemistry , Viscosity , Mice , Humans , Cell Line, Tumor , Neoplasms/diagnosis , Neoplasms/pathology , Optical Imaging/methods
8.
Biomacromolecules ; 25(5): 2925-2933, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38691827

ABSTRACT

A "one-step" strategy has been demonstrated for the tunable synthesis of multifunctional aliphatic polycarbonates (APCs) with ethylene oxide (EO), ethylene carbonate (EC), and cyclohexene oxide (CHO) side groups by the copolymerization of 4-vinyl-1-cyclohexene diepoxide with carbon dioxide under an aminotriphenolate iron/PPNBz (PPN = bis(triphenylphosphine)-iminium, Bz = benzoate) binary catalyst. By adjusting the PPNBz-to-iron complex ratio and incorporating auxiliary solvents, the content of functional side groups can be tuned within the ranges of 53-75% for EO, 18-47% for EC, and <1-7% for CHO. The yield and molecular weight distribution of the resulting multifunctional APCs are affected by the viscosity of the polymerization system. The use of tetrahydrofuran as an auxiliary solvent enables the preparation of narrow-distribution polycarbonates at high conversion. This work presents a novel perspective for the preparation of tailorable multifunctional APCs.


Subject(s)
Carbon Dioxide , Polycarboxylate Cement , Polymerization , Carbon Dioxide/chemistry , Polycarboxylate Cement/chemistry , Epoxy Compounds/chemistry , Ethylene Oxide/chemistry , Cyclohexenes/chemistry , Catalysis , Viscosity , Dioxolanes
9.
Analyst ; 149(10): 2956-2965, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38597984

ABSTRACT

Glioblastoma is the most fatal and insidious malignancy, due to the existence of the blood-brain barrier (BBB) and the high invasiveness of tumor cells. Abnormal mitochondrial viscosity has been identified as a key feature of malignancies. Therefore, this study reports on a novel fluorescent probe for mitochondrial viscosity, called ZVGQ, which is based on the twisted intramolecular charge transfer (TICT) effect. The probe uses 3-dicyanomethyl-1,5,5-trimethylcyclohexene as an electron donor moiety and molecular rotor, and triphenylphosphine (TPP) cation as an electron acceptor and mitochondrial targeting group. ZVGQ is highly selective, pH and time stable, and exhibits rapid viscosity responsiveness. In vitro experiments showed that ZVGQ could rapidly recognize to detect the changes in mitochondrial viscosity induced by nystatin and rotenone in U87MG cells and enable long-term imaging for up to 12 h in live U87MG cells. Additionally, in vitro 3D tumor spheres and in vivo orthotopic tumor-bearing models demonstrated that the probe ZVGQ exhibited exceptional tissue penetration depth and the ability to penetrate the BBB. The probe ZVGQ not only successfully visualizes abnormal mitochondrial viscosity changes, but also provides a practical and feasible tool for real-time imaging and clinical diagnosis of glioblastoma.


Subject(s)
Fluorescent Dyes , Glioblastoma , Mitochondria , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Mitochondria/metabolism , Viscosity , Cell Line, Tumor , Animals , Mice , Mice, Nude , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Optical Imaging
10.
ACS Biomater Sci Eng ; 10(5): 3280-3292, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38608136

ABSTRACT

Hydrogels have gained significant popularity as model platforms to study reciprocal interactions between cells and their microenvironment. While hydrogel tools to probe many characteristics of the extracellular space have been developed, fabrication approaches remain challenging and time-consuming, limiting multiplexing or widespread adoption. Thus, we have developed a modular fabrication approach to generate distinct hydrogel microenvironments within the same 96-well plate for increased throughput of fabrication as well as integration with existing high-throughput assay technologies. This approach enables in situ hydrogel mechanical characterization and is used to generate both elastic and viscoelastic hydrogels across a range of stiffnesses. Additionally, this fabrication method enabled a 3-fold reduction in polymer and up to an 8-fold reduction in fabrication time required per hydrogel replicate. The feasibility of this platform for two-dimensional (2D) cell culture applications was demonstrated by measuring both population-level and single-cell-level metrics via microplate reader and high-content imaging. Finally, a 96-well hydrogel array was utilized for three-dimensional (3D) cell culture, demonstrating the ability to support high cell viability. Together, this work demonstrates a versatile and easily adaptable fabrication approach that can support the ever-expanding tool kit of hydrogel technologies for cell culture applications.


Subject(s)
Hydrogels , Hydrogels/chemistry , Humans , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Cell Survival , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques, Three Dimensional/instrumentation , Elasticity , Viscosity
11.
Int J Biol Macromol ; 267(Pt 1): 131426, 2024 May.
Article in English | MEDLINE | ID: mdl-38583836

ABSTRACT

This study aimed to evaluate the physical and chemical alterations in rice starch modified by heat-moisture treatment (HMT) using an autoclave and a microwave, in association with avocado oil (AO), and evaluate the effects on thermal and structural properties, in vitro digestibility, and estimated glycemic index (eGI). Samples were adjusted to 30 % (w/w) moisture and 2, 4 and 8 % AO. HMT was conducted at 110 °C for 1 h in the autoclave (A0%, A2%, A4%, and A8%) and at 50 °C for 3 min in the microwave (M0%, M2%, M4%, and M8%). Both procedures did not alter the starch crystallinity pattern (type-A). Pasting viscosity, setback, relative crystallinity, and gelatinisation enthalpy decreased as the AO content increased in both HMT processes. The M8% showed reduced digestibility, decreased eGI (72.99, p < 0.05), and lower starch hydrolysis concentration (62.75 %, p < 0.05). The application of HMT with the addition of AO may be an interesting process for obtaining resistant starch since its content increased after both treatments (A8%, M4%, and M8%). The microwave process proved efficient, making it possible to use a lower temperature, less time, and less energy for modification and obtain starches with improved characteristics.


Subject(s)
Hot Temperature , Microwaves , Oryza , Persea , Plant Oils , Starch , Starch/chemistry , Oryza/chemistry , Persea/chemistry , Plant Oils/chemistry , Viscosity , Hydrolysis
12.
Int J Biol Macromol ; 267(Pt 1): 131435, 2024 May.
Article in English | MEDLINE | ID: mdl-38593900

ABSTRACT

This study represents the inaugural investigation into the effect of cold plasma (CP) pretreatment combined with sodium periodate on the preparation of dialdehyde starch (DAS) from native maize starch and its consequent effects on the properties of DAS. The findings indicate that the maize starch underwent etching by the plasma, leading to an increase in the particle size of the starch, which in turn weakened the rigid structure of the starch and reduced its crystallinity. Concurrently, the plasma treatment induced cleavage of the starch molecular chain, resulting in a decrease in the viscosity of the starch and an enhancement of its fluidity. These alterations facilitated an increased contact area between the starch and the oxidising agent sodium periodate, thereby augmenting the efficiency of the DAS preparation reaction. Consequently, the aldehyde group content was elevated by 9.98 % compared to the conventional DAS preparation methodology. Therefore, CP could be an efficient and environmentally friendly non-thermal processing method to assist starch oxidation for DAS preparation and property enhancement.


Subject(s)
Periodic Acid , Plasma Gases , Starch , Starch/analogs & derivatives , Zea mays , Starch/chemistry , Zea mays/chemistry , Periodic Acid/chemistry , Plasma Gases/chemistry , Viscosity , Oxidation-Reduction , Particle Size
13.
Int J Biol Macromol ; 267(Pt 1): 131470, 2024 May.
Article in English | MEDLINE | ID: mdl-38599425

ABSTRACT

Hot air (HA) drying caused quality damage of grains with long treatment time. Radio frequency (RF) heating as an emerging technology was applied to improve drying quality of cereals effectively. The effects of HA-RF drying (50 °C, 70 °C, 90 °C) of corn kernels on the morphology, structure, and physicochemical properties of starch were investigated and compared with HA drying. The surface of treated starch became rough, along with fragments and pores. Drying treatments increased the amylose content from 10.59 % to 23.88 % and the residual protein content of starch from 0.58 % to 1.23 %, and reduced the crystallinity from 31.95 % to 17.15 % and short-range order structures of starch from 0.918 to 0.868. The change of structures in turn resulted in the increase of pasting viscosity, gelatinization temperature, storage modulus and loss modulus. Furthermore, the HA-RF dried starch displayed stronger thermal stability, higher gelatinization degree and better gelation properties than the HA-treated starch at the same temperature. The data proved that the synergistic effects of HA and RF were more effective in modulating the starch structure and improving the functional characteristics of corn starch. This paper would like to provide potential reference for better application of HA-RF technologies to corn.


Subject(s)
Hot Temperature , Starch , Zea mays , Zea mays/chemistry , Starch/chemistry , Amylose/chemistry , Radio Waves , Viscosity , Desiccation/methods , Air
14.
Int J Biol Macromol ; 267(Pt 1): 131542, 2024 May.
Article in English | MEDLINE | ID: mdl-38608973

ABSTRACT

Hyaluronic acid (HA), as a multifunctional hydrophilic polysaccharide, is potentially beneficial in improving the thermal stability of fermented modified starches, but relevant insights at the molecular level are lacking. The aim of this study was to investigate the effect of different levels (0 %, 3 %, 6 %, 9 %, 12 % and 15 %) of HA on the structural, thermal and pasting properties of wheat starch co-fermented with Saccharomyces cerevisiae and Lactobacillus plantarum. We found that the addition of HA increased the median particle size of fermented starch granules from 16.387 to 17.070 µm. Meanwhile, the crystallinity of fermented starch was negatively correlated with the HA content, decreasing from 14.70 % to 12.80 % (p < 0.05). Fourier transform infrared spectroscopy results confirmed that HA interacted with starch granules and water molecules mainly through hydrogen bonding. Thermal analyses showed that the thermal peak of the composite correlated with the HA concentration, reaching a maximum of 73.17 °C at 12 % HA. In addition, HA increases the pasting temperature, reduces the peak, breakdown and setback viscosities of starch. This study demonstrates the role of HA in improving the thermal stability of fermented starch, providing new insights for traditional fermented food research and the application of HA in food processing.


Subject(s)
Fermentation , Hyaluronic Acid , Lactobacillus plantarum , Saccharomyces cerevisiae , Starch , Triticum , Lactobacillus plantarum/metabolism , Saccharomyces cerevisiae/metabolism , Starch/chemistry , Starch/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Triticum/chemistry , Temperature , Spectroscopy, Fourier Transform Infrared , Viscosity
15.
Int J Biol Macromol ; 267(Pt 1): 131522, 2024 May.
Article in English | MEDLINE | ID: mdl-38614175

ABSTRACT

Glutinous sorghum grains were soaked (60-80 °C, 2-8 h) to explore the effects of soaking, an essential step in industrial processing of brewing, on starch. As the soaking temperature increased, the peak viscosity and crystallinity of starch gradually decreased, while the enzymatic hydrolysis rate and storage modulus first increased and then decreased. At 70 °C, the content of amylose, the enzymatic hydrolysis rate of starch, and the final viscosity first increase and then decrease with the increase of soaking time, reaching their maximum at 6 h, increased by 53.1 %, 11.0 %, and 10.4 %, respectively, as compared with the non-soaked sample. At 80 °C (4 h), the laser confocal microscopy images showed a network structure formed between the denatured protein chains and the leached-out amylose chains. The molecular weights of starch before and after soaking were all in the range of 3.82-8.98 × 107 g/mol. Since 70 °C is lower than that of starch gelatinization and protein denaturation, when soaking for 6 h, the enzymatic hydrolysis rate of starch is the highest, and the growth of miscellaneous bacteria is inhibited, which is beneficial for subsequent processing technology. The result provides a theoretical basis for the intelligent control of glutinous sorghum brewing.


Subject(s)
Amylose , Chemical Phenomena , Sorghum , Starch , Sorghum/chemistry , Starch/chemistry , Hydrolysis , Amylose/chemistry , Viscosity , Edible Grain/chemistry , Temperature , Molecular Weight
16.
Int J Biol Macromol ; 267(Pt 1): 131488, 2024 May.
Article in English | MEDLINE | ID: mdl-38615862

ABSTRACT

This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.


Subject(s)
Amylopectin , Amylose , Starch , Vigna , Amylose/chemistry , Amylose/analysis , Amylopectin/chemistry , Viscosity , Vigna/chemistry , Starch/chemistry , Starch/metabolism , Elasticity , Digestion , Molecular Weight
17.
Ultrason Sonochem ; 105: 106868, 2024 May.
Article in English | MEDLINE | ID: mdl-38581798

ABSTRACT

The use of extracts rich in bioactive compounds is becoming increasingly common in the food, cosmetics, and pharmaceutical industries for the production of functional products. Araticum is a potential fruit to be analyzed due to its content of phenolic compounds, carotenoids and vitamins, with antioxidant properties. Therefore, this study aimed to investigate the effect of ultrasound on total phenolic compounds, total carotenoids, ascorbic acid, color, turbidity and rheology in araticum juice. Response surface methodology based on a central composite design was applied. Araticum juice was subjected to sonication at amplitude levels ranging from 20 to 100 % of the total power (400 W) at a constant frequency of 20 kHz for different durations (2 to 10 min). Morphological analysis was conducted to observe microscopic particles, and viscosity and suitability to rheological models (Newtonian, Power Law, and Herschel-Bulkley) were assessed. The ultrasonic probe extraction method was compared to the control juice. According to the responses, using the desirability function, the optimal conditions for extraction were determined to be low power (low amplitude) applied in a short period of time or low power applied in a prolonged time. These conditions allowed an ultrasonic probe to act on releasing bioactive compounds without degrading them. All three rheological models were suitable, with the Power Law model being the most appropriate, exhibiting non-Newtonian pseudoplastic behavior.


Subject(s)
Rheology , Annona/chemistry , Fruit and Vegetable Juices/analysis , Carotenoids/chemistry , Viscosity , Ultrasonic Waves , Sonication , Phenols/chemistry , Ascorbic Acid/chemistry
18.
Water Sci Technol ; 89(7): 1787-1806, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619903

ABSTRACT

The conventional building drainage system was constructed based on the theory of two-phase flow involving water and air. However, the drainage system contained a more intricate three-phase flow, encompassing water, air, and solids, which was relatively overlooked in research. This study addressed the impact of solids on pressure fluctuations, air flow rates, and hydraulic jump fullness within the drainage system, considering three factors: the mass factor, cross-section factor, and viscosity. The investigation was conducted within a single-stack system using both experimental methods and CFD simulations. The findings revealed a positive correlation between both positive and negative pressures and above three factors. The mass factor and the cross-section factor had a more significant impact on the negative pressure of the system. The maximum growth rates of negative pressure extremes under different mass and cross-section factors reached 7.72 and 16.52%, respectively. In contrast, the viscosity of fecal sludge had a slightly higher effect on the positive pressure fluctuation of the drainage system, with the maximum growth rate of positive pressure extremes at 3.41%.


Subject(s)
Sewage , Water , Air Pressure , Pressure , Viscosity
19.
Zhongguo Zhong Yao Za Zhi ; 49(3): 634-643, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621867

ABSTRACT

This paper aims to study the correlation between the physicochemical properties of raw materials and intermediates and the molding quality and law of traditional Chinese medicine(TCM) gel plaster by using TCM slices and powder as raw materials. 48 TCM compounds are selected as model prescriptions to prepare gel plasters. The rotational rheometer is used to determine the rheological parameters of the plaster, including storage modulus(G'), loss modulus(G″), yield stress(τ), and creep compliance [J(t)]. The molding quality of the prepared TCM gel plaster is evaluated by subjective and objective measures. Clustering and principal component analysis are conducted to evaluate the physical properties of the plaster. By measuring the rheological properties of the plaster, the molding quality of the TCM gel plaster can be predicted, with an accuracy of 83.72% after seven days of modeling and 88.37% after 30 days of modeling. When the parameters such as G' and G″ of the plaster are large, and the [J(t)] is small, the molding quality of the plaster is better. When the plaster coating point is no less than 3, it is difficult to be coated. In addition, when the proportion of metal ions in the prescription is higher, the 30-day forming quality of the plaster is mainly affected, and the viscosity of the plaster is poor. If the prescription contains many acidic chemical components, the 7-day forming quality of the plaster is mainly affected, with many residuals. The results suggest that the rheological properties of the plaster can be used to predict the molding quality of TCM slice and powder gel plaster. It can provide a reference for the development of TCM gel plaster prescriptions.


Subject(s)
Medicine, Chinese Traditional , Prescriptions , Powders , Viscosity , Rheology
20.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674055

ABSTRACT

Polymer electrolyte was used as a medium for testing the performance of microband electrodes under conditions of linear diffusion. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments were performed in a highly viscous medium, where diffusion rates are much slower than in fluid solutions. The log i vs. log v (CV) or log i vs. log t (CA) relationships with the current equation confirmed the existence of such conditions, yielding slope values that were lower than the expected 0.5. This could indicate an impure linear diffusion profile, i.e., some contribution from radial diffusion (edge effects). However, the desired value of 0.5 was obtained when performing these tests in monomeric solvents of similar viscosities, such as glycerol or propylene glycol. These results led to the conclusion that the current equations, which are based on Fick's laws, may not be applicable for polymer electrolytes, where various obstructions to free diffusion result in a more complicated process than for monomeric solvents.


Subject(s)
Polymers , Solvents , Solvents/chemistry , Diffusion , Polymers/chemistry , Electrochemical Techniques/methods , Viscosity , Electrolytes/chemistry , Electrodes , Electrochemistry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...